Tech Book: Effective Modern C++, Scott Meyers

EffectiveModernC++When Scott Meyers announced his retirement from C++ duties, I thought I’d get a copy of his latest book. There’s plenty in it to interest even seasoned C++ developers – as always, Scott’s insight and in-depth examples are worth studying. I’ve tried out most of the C++11 features, but still learnt a lot working through this book.

Uniform Initialisation and Auto
Meyers points out that compared to parentheses or just plain “=”, braced initialisation can be used in the most contexts, avoids his famous “C++’s most vexing parse”, and will issue compiler errors if narrowing occurs. However, for types that can take a std::initialiser_list in their constructor, the compiler is required to favour std::initialiser_list over any other interpretation. That’s a deterrent to use of braced initialisation with types that have a std::initializer_list constructor – and also precludes using auto with braced initialisation.

auto x = { 4 }; // type of x is inferred to be std::initializer_list<int>!

How to use the new “= delete” idiom
Meyers recommends declaring deleted methods as public to get better error messages from compilers that check for accessibility before deleted status. He also points out that you can declare non-member functions as deleted (I’d only seen examples of copy-constructor/copy-assignment operator as deleted before).

Use of noexcept on move operations
This one is a classic example of a combination of language features having an unexpected effect. std::vector::push_back offers the strong exception guarantee. It can achieve this using any copy constructor and being sure not to change the original contents of the vector until any new elements or copies have been constructed. Hence, move constructors are only preferred if it is exception-safe to do so – which means they must be marked as noexcept (and if that isn’t appropriate, you just won’t get move semantics pushing instances of your type into a std::vector).

Recursion with constexpr
Having toyed with template meta-programming in the past, this use of constexpr appeals to me:

constexpr int pow( int b, int exp ) noexcept
    return (exp == 0 ? 1 : b * pow( b, exp-1 ));
constexpr auto eight = pow( 2, 3 );

void testConstExpr()
    std::cout << "2^3 = " << eight << "\n";

It’s much more succinct than the equivalent TMP version, and still performs the calculation at compile time.

In the past, I’ve recommended Effective C++ for developers who have little experience of the language and wish to improve their skills. I think this book is a bit too advanced for that, particularly given the chapters on template type deduction and decltype being in the first part of the book! So read this book if you’ve got a few years’ experience of C++ already, but look at Effective C++ (3rd Edition) to improve on the basics.

Four stars

Leave a comment

Filed under C++, C++ Code, Programming, Tech Book

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s